Tests for normal mixtures based on the empirical characteristic function

نویسندگان

  • Bernhard Klar
  • Simos G. Meintanis
چکیده

A goodness–of–fit test for two–component homoscedastic and homothetic mixtures of normal distributions is proposed. The tests are based on a weighted L2–type distance between the empirical characteristic function and its population counterpart, where in the latter, parameters are replaced by consistent estimators. Consequently the resulting tests are consistent against general alternatives. When moment estimation is employed and as the decay of the weight function tends to infinity the test statistics approach limit values, which are related to the first nonvanishing moment equation. The new tests are compared via simulation to other omnibus tests for mixtures of normal distributions, and are applied to several real data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality

It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace tra...

متن کامل

A New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function

Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...

متن کامل

Continuous Empirical Characteristic Function Estimation of Mixtures of Normal Parameters

This paper develops an efficient method for estimating the discrete mixtures of normal family based on the continuous empirical characteristic function (CECF). An iterated estimation procedure based on the closed form objective distance function is proposed to improve the estimation efficiency. The results from the Monte Carlo simulation reveal that the CECF estimator produces good finite sampl...

متن کامل

Semi Empirical Calculation of Intermolecular Potentials and Transport Properties of Some Binary and Ternary Industrial Refrigerant Mixtures

In this study the intermolecular potential energies of some environment-friendly industrial HFC refrigerants were obtained through the inversion method which is based on the corresponding states principle. These potentials were later employed in calculation of transport properties (viscosity, diffusion, thermal conductivity and thermal diffusion factor) of some binary and ternary refrigerant mi...

متن کامل

Tests of Fit for Normal Variance Inverse Gaussian Distributions

Goodness–of–fit tests for the family of symmetric normal variance inverse Gaussian distributions are constructed. The tests are based on a weighted integral incorporating the empirical characteristic function of suitably standardized data. An EM– type algorithm is employed for the estimation of the parameters involved in the test statistic. Monte Carlo results show that the new procedure is com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2005